SciELO - Scientific Electronic Library Online

 
vol.30 número1Comparación entre la autoimagen y el índice de masa corporal entre los niños que viven en una favela en Rio de Janeiro, Brasil, 2012Prevalencia y factores asociados con la hipertensión arterial en adultos que viven en Senador Canedo, Goiás, Brasil: estudio de base poblacional, 2016 índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Epidemiologia e Serviços de Saúde

versión impresa ISSN 1679-4974versión On-line ISSN 2237-9622

Resumen

LIMA, Marcos Venicius Malveira de  y  LAPORTA, Gabriel Zorello. Evaluation of prediction models for the occurrence of malaria in the state of Amapá, Brazil, 1997-2016: an ecological study. Epidemiol. Serv. Saúde [online]. 2021, vol.30, n.1, e2020080.  Epub 10-Feb-2021. ISSN 1679-4974.  http://dx.doi.org/10.1590/s1679-49742021000100007.

Objective

To evaluate the predictive power of different malaria case time-series models in the state of Amapá, Brazil, for the period 1997-2016.

Methods

This is an ecological time series study with malaria cases recorded in the state of Amapá. Ten deterministic or stochastic statistical models were used for simulation and testing in 3, 6, and 12 month forecast horizons.

Results

The initial test showed that the series is stationary. Deterministic models performed better than stochastic models. The ARIMA model showed absolute errors of less than 2% on the logarithmic scale and relative errors 3.4-5.8 times less than the null model. It was possible to predict future malaria cases 6 and 12 months in advance.

Conclusion

The ARIMA model is recommended for predicting future scenarios and for earlier planning in state health services in the Amazon Region.

Palabras clave : Time Series Studies; Malaria; Decision Support Techniques; Epidemiological Monitoring; Forecasting.

        · resumen en Español | Portugués     · texto en Portugués | Inglés     · Inglés ( pdf ) | Portugués ( pdf )